Predictive Density Accuracy Tests∗
نویسندگان
چکیده
This paper outlines a testing procedure for assessing the relative out-of-sample predictive accuracy of multiple conditional distribution models, and surveys existing related methods in the area of predictive density evaluation, including methods based on the probability integral transform and the Kullback-Leibler Information Criterion. The procedure is closely related to Andrews’ (1997) conditional Kolmogorov test and to White’s (2000) reality check approach, and involves comparing square (approximation) errors associated with models i, i = 1, ..., n, by constructing weighted averages over U of E (( Fi(u|Z, θ† i )− F0(u|Z, θ0) )2) , where F0(·|·) and Fi(·|·) are true and approximate distributions, u ∈ U , and U is a possibly unbounded set on the real line. Appropriate bootstrap procedures for obtaining critical values for tests constructed using this measure of loss in conjunction with predictions obtained via rolling and recursive estimation schemes are developed. We then apply these bootstrap procedures to the case of obtaining critical values for our predictive accuracy test. A Monte Carlo experiment comparing our bootstrap methods with methods that do not include location bias adjustment terms is provided, and results indicate coverage improvement when our proposed bootstrap procedures are used. Finally, an empirical example comparing alternative predictive densities for U.S. inflation is given. JEL classification: C22, C51.
منابع مشابه
Predictive Density and Conditional Confidence Interval Accuracy Tests ∗
This paper outlines testing procedures for assessing the relative out-of-sample predictive accuracy of multiple conditional distribution models. The tests that are discussed are based on either the comparison of entire conditional distributions or the comparison of predictive confidence intervals. We also briefly survey existing related methods in the area of predictive density evaluation, incl...
متن کاملWorking Paper No. 09-29 Predictive Density Construction and Accuracy Testing with Multiple Possibly Misspecified Diffusion Models
This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspecified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing predictive densities for one-factor and stochastic volatility models. Then, we construct accuracy assessment tests that are in the spirit of Diebold and Mariano (1995) and White (2...
متن کاملPredictive Density Construction and Accuracy Testing with Multiple Possibly Misspecified Diffusion Models∗
This paper develops tests for comparing the accuracy of predictive densities derived from (possibly misspecified) diffusion models. In particular, we first outline a simple simulation-based framework for constructing predictive densities for one-factor and stochastic volatility models. Then, we construct accuracy assessment tests that are in the spirit of Diebold and Mariano (1995) and White (2...
متن کاملWORKING PAPERS SERIES WP04-16 Predictive Density Accuracy Tests
This paper outlines a testing procedure for assessing the relative out-of-sample predictive accuracy of multiple conditional distribution models, and surveys existing related methods in the area of predictive density evaluation, including methods based on the probability integral transform and the Kullback-Leibler Information Criterion. The procedure is closely related to Andrews’ (1997) condit...
متن کاملLikelihood-based scoring rules for comparing density forecasts in tails
We propose new scoring rules based on conditional and censored likelihood for assessing the predictive accuracy of competing density forecasts over a specific region of interest, such as the left tail in financial riskmanagement. These scoring rules can be interpreted in terms of Kullback–Leibler divergence between weighted versions of the density forecast and the true density. Existing scoring...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004